
Chapter 4 Appendix 3 Extra terms

The Hyperbolic method has been used to prove that∑
n≤x

d(n) = x log x+ (2γ−1)x+O
(
x1/2

)
. (1)

This can be used within the Convolution Method to prove

Theorem 1 There exists a constant C1 such that∑
n≤X

2ω(n) =
1

ζ(2)
X logX + C1X +O

(
X1/2 logX

)
.

Solution Recall that 2ω = d ∗ µ2 so∑
n≤X

2ω(n) =
∑
a≤X

µ2(a)
∑

b≤X/a

d(b)

=
∑
a≤X

µ2(a)

(
X

a
log

X

a
+ (2γ−1)

X

a
+O

((
X

a

)1/2
))

,

by (1). Recall that µ2(a) is non-zero only if a = m2, say. Thus

∑
n≤X

2ω(n) =
∑

m2≤X

µ(m)

(
X

m2
log

X

m2
+ (2γ−1)

X

m2
+O

((
X

m2

)1/2
))

. (2)

The error here is

O

X1/2
∑

m≤X1/2

1

m

 = O
(
X1/2 logX

)
.

For the first term in (2) we use a trick of writing the logarithm as an
integral and then interchanging it with the summation:

∑
m2≤X

µ(m)
X

m2
log

X

m2
= X

∑
m2≤X

µ(m)

m2

∫ X

m2

dt

t
= X

∫ X

1

∑
m2≤t

µ(m)

m2

dt

t
. (3)
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In this integrand the sum converges absolutely so we complete it to in-
finity,

∑
m2≤t

µ(m)

m2
=

∞∑
m=1

µ(m)

m2
−
∑

m>t1/2

µ(m)

m2
=

1

ζ(2)
+O

 ∑
m>t1/2

1

m2


=

1

ζ(2)
+ ε(t) , (4)

where ε(t) = O
(
1/t1/2

)
. Inserted into (3) this gives∑

m2≤X

µ(m)
X

m2
log

X

m2
= X

∫ X

1

(
1

ζ(2)
+ ε(t)

)
dt

t
=

X logX

ζ (2)
+X

∫ X

1

ε(t)
dt

t
.

Since ε(t) = O
(
1/t1/2

)
the integral∫ ∞

1

ε(t)
dt

t

converges and so is a constant we will denote by C0. Then∫ X

1

ε (t)
dt

t
= C0 −

∫ ∞
X

ε (t)
dt

t
= C0 +O

(∫ ∞
X

dt

t3/2

)
= C0 +O

(
1

X1/2

)
.

Hence ∑
m2≤X

µ(m)
X

m2
log

X

m2
=

X logX

ζ(2)
+ C0X +O

(
X1/2

)
.

The result (4) with t = X1/2 will deal with the remaining term in (2) to
give ∑

n≤X

2ω(n) =
1

ζ(2)
X logX + C0X +O

(
X1/2

)
+

+ (2γ−1)X

(
1

ζ(2)
+O

(
1

X1/2

))
+O
(
X1/2 logX

)
.

This gives the stated result with

C1 = C0 +
1

ζ(2)
(2γ−1) .
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�

Question Generalise the previous result and prove that there exists a con-
stant Dk such that∑

n≤x

d ∗ µk(n) =
1

ζ(k)
x log x+Dkx+O

(
x1/2

)
.

for k ≥ 3. (So there is no log term in the error when k ≥ 3).

Solution Start as above∑
n≤x

d ∗ µk(n) =
∑
a≤x

µk(a)
∑
b≤x/a

d(b)

=
∑
a≤x

µk(a)

(
x

a
log

x

a
+ (2γ−1)

x

a
+O

((x
a

)1/2))
(5)

=
∑
mk≤x

µ(m)

(
x

mk
log

x

mk
+ (2γ−1)

x

mk
+O

(( x

mk

)1/2))
.

For the first term we proceed as∑
mk≤x

µ(m)
x

mk
log

x

mk
=

∫ x

1

(
1

ζ (k)
+ εk(t)

)
dt

t

=
1

ζ (k)
log x+

∫ x

1

εk(t)
dt

t
,

where εk(t) � 1/t1−1/k. Because the integral converges it can be completed
to

Ck =

∫ ∞
1

εk(t)
dt

t
,

say, with an error

≤
∫ ∞
x

εk(t)
dt

t
�
∫ ∞
x

dt

t2−1/k
� 1

x1−1/k
.

Hence ∑
mk≤x

µ(m)
x

mk
log

x

mk
=

1

ζ(k)
log x+ Ck +O

(
1

x1−1/k

)
,
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The second term in (5) is

(2γ−1)x
∑

m≤x1/k

µ(m)

mk
= (2γ−1)x

(
1

ζ(k)
+O

(
1

(x1/k)
k−1

))
.

While the error in (5) is

O

x1/2 ∑
m≤x1/k

1

mk/2

 .

The sum here converges since k ≥ 3, and so is bounded by a constant.
Combining these three results we get the stated result with

Dk = Ck +
(2γ−1)

ζ(k)
.
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Additional terms for
∑

n≤x d
(
n2
)
.

Let g(n) = d(n2) where d is the divisor function. In Problem Sheet 2 we
have g = 1 ∗ 1 ∗ 1 ∗ µ2 = d ∗ Q2. Can the Hyperbolic Method be used to
improve previous results on

∑
n≤x d(n2)?

To do so need to first prove two lemmas

Lemma 2 There exists a constant Cd say for which∑
a≤U

d(a)

a
=

1

2
log2 U + 2γ logU + Cd +O

(
1

U1/2

)
.

Proof By Partial Summation and (1) ,

∑
a≤U

d(a)

a
=

1

U

∑
a≤U

d (a) +

∫ U

1

∑
a≤t

d (a)
dt

t2

=
1

U

(
U logU + (2γ − 1)U +O

(
U1/2

) )
+

∫ U

1

(
t log t+ (2γ − 1) t+ ε(t)

)dt
t2

where ε(t) � t1/2. This gives the stated result with

Cd = 2γ−1 +

∫ ∞
1

ε(t)
dt

t2
.

�

Lemma 3 There exists a constant CQ say, for which∑
b≤V

Q2(b)

b
=

1

ζ (2)
log V + CQ +O

(
1

V 1/2

)
.
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Proof By Partial Summation and the sums of square-free numbers

∑
b≤V

Q2(b)

b
=

1

V

∑
b≤V

Q2(b) +

∫ V

1

∑
b≤t

Q2(b)
dt

t2

=
1

V

(
1

ζ(2)
V +O

(
V 1/2

))

+

∫ V

1

(
1

ζ(2)
t+ ε(t)

)
dt

t2

where ε(t) � t1/2. This gives the stated result with

Cd =
1

ζ (2)
+

∫ ∞
1

ε(t)
dt

t2
.

�

Theorem 4 There exist constants c1 and c2 such that∑
n≤x

d
(
n2
)

=
1

2ζ (2)
x log2 x+ c1x log x+ c2x+O

(
x3/4 log x

)
Proof With U and V to be chosen, the Hyperbolic Method gives

∑
n≤X

d
(
n2
)

=
∑
n≤X

d ∗Q2(n) =
∑
a≤U

d(a)
∑

b≤X/a

Q2(b) +
∑
b≤V

Q2(b)
∑

a≤X/b

d(a)

−

(∑
a≤U

d(a)

)(∑
b≤V

Q2(b)

)
.

By the Lemmas above,∑
a≤U

d(a)
∑

b≤X/a

Q2(b) =
∑
a≤U

d(a)

(
1

ζ(2)

x

a
+O

((x
a

)1/2))
, (6)

and∑
b≤V

Q2(b)
∑

a≤X/b

d(a) =
∑
b≤V

Q2(b)

(
x

b
log

x

b
+ (2γ−1)

x

b
+O

((x
b

)1/2))
.

(7)
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Errors

The first error, in (6) is, by partial summation

x1/2
∑
a≤U

d(a)

a1/2
= x1/2

(
1

U1/2

∑
a≤U

d(a) +
1

2

∫ U

1

∑
a≤t

d(a)
dt

t3/2

)

� x1/2
(

1

U1/2
U logU +

1

2

∫ U

1

t log t
dt

t3/2

)
� x1/2U1/2 logU.

The second error, in (7) is, again by partial summation,

x1/2
∑
b≤V

Q2(b)

b1/2
= x1/2

(
1

V 1/2

∑
b≤V

Q2(b) +
1

2

∫ V

1

∑
b≤t

Q2(b)
dt

t3/2

)

� x1/2
(

1

V 1/2
V +

1

2

∫ V

1

t
dt

t3/2

)
� x1/2V 1/2

The idea would be to equate these errors, which means demanding U = V .
Since UV = x this means that U = V = x1/2, when the two errors above are
� x3/4 log x.

An error will also arise from the first term in (6) ,

x

ζ (2)

∑
a≤U

d(a)

a
=

x

ζ(2)

(
1

2
log2 U + 2γ logU + Cd

)
+O

( x

U1/2

)
,

but this is only O
(
x3/4

)
with our choice of U = x1/2.

In the first term in (7) we cannot immediately use the idea of writing the
logarithm as an integral. This is because it is the logarithm of x/b where as
the sum is over b ≤ V and not b ≤ x. So first write

log
x

b
= log

x

V
+ log

V

b
.

The first term is independent of b and can be taken out of the sum. The
second term has the factor V/b and the sum is over b ≤ V, thus the idea of
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writing this term as an integral will work.

x
∑
b≤V

Q2(b)

b
log

x

b
= x

∑
b≤V

Q2(b)

b

(
log

x

V
+ log

V

b

)

= x log
x

V

∑
b≤V

Q2(b)

b
+ x

∫ V

1

∑
b≤t

Q2(b)

b

dt

t

= x log
x

V

(
1

ζ(2)
log V + CQ +O

(
1

V 1/2

))
(8)

+x

∫ V

1

(
1

ζ(2)
log t+ CQ + η (t)

)
dt

t

where η (t) � 1/t1/2. The integral here equals

1

2ζ(2)
log2 V + CQ log V +D +O

(
1

V 1/2

)
, (9)

where

D =

∫ ∞
1

η (t)
dt

t
.

The errors in (8) and (9) are O
(
x (log x/V ) /V 1/2

)
and O

(
x/V 1/2

)
which

are � x3/4 log x by our choice of V = x1/2.

The second term in (7) is

(2γ − 1)x
∑
b≤V

Q2(b)

b
= (2γ−1)x

(
1

ζ(2)
log V + CQ +O

(
1

V 1/2

))
,

and the error is again � x3/4.

Finally, the last term in the Hyperbolic Method is(∑
a≤U

d (a)

)(∑
b≤V

Q2(b)

)
=

(
U logU + (2γ−1)U +O

(
U1/2

) )
×
(

1

ζ(2)
V +O

(
V 1/2

))
.

The error from this is O
(
U1/2V +UV 1/2 logU

)
which is O

(
x3/4 log x

)
by the

choice of U and V .
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Main Terms

The main terms are scattered throughout the above expressions. The
main terms will not depend on the choice of U and V , the reason for intro-
ducing U and V are that good choices for them will give a good bound on
the error term.

Terms with two logarithms:

x

ζ(2)

1

2
log2 U + x log

x

V

1

ζ(2)
log V +

x

2ζ(2)
log2 V

=
x

2ζ(2)

(
log2 U + 2 log

x

V
log V + log2 V

)
=

x

2ζ(2)

(
log2 U + 2 logU log V + log2 V

)
since UV = x

=
x

2ζ(2)
(logU + log V )2 =

x

2ζ(2)
(logUV )2

=
x

2ζ(2)
log2 x.

Terms with one logarithm:

x

ζ(2)
2γ logU + CQx log

x

V
+ CQx log V

+ (2γ − 1)
x

ζ(2)
log V − (U logU)

(
1

ζ(2)
V

)
=

x

ζ(2)
2γ (logU + log V ) + CQx

(
log

x

V
+ log V

)
− x

ζ(2)
(log V + logU)

=
x

ζ(2)
2γ (logUV ) + CQx

(
log

x

V
V
)
− x

ζ(2)
(log V U)

=

(
(2γ−1)

ζ(2)
+ CQ

)
x log x.

Terms with no logarithm:

Cd
x

ζ(2)
+Dx+(2γ−1)CQx+

(2γ−1)

ζ(2)
UV =

(
Cd

ζ(2)
+D + (2γ−1)CQ +

(2γ−1)

ζ(2)

)
x

�
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The Improvement of
∑

n≤x d3(n)

If we attempted to improve∑
n≤x

d3(n) =
1

2
x log2 x+O(x log x) ,

by using the improved estimate for
∑

n≤x d(n) from (1) in the Convolution

Method, we would get∑
n≤x

d3(n) =
∑
m≤x

(
x

m
log

x

m
+ (2γ − 1)

x

m
+O

(( x
m

)1/2))
.

The error term here is

� x1/2
∑
m≤x

1

m1/2
� x.

We can get a far smaller error by using the Hyperbolic Method. For this
we will need the following result.

Lemma 5 There exists a constant C2 such that∑
1≤n≤x

log n

n
=

1

2
log2 x+ C2 +O

(
log x

x

)
.

Proof Writing the logarithm as an integral an interchanging the summation
and integration gives∑

n≤x

log n

n
=
∑
n≤x

1

n

∫ n

1

dt

t
=

∫ x

1

dt

t

∑
t<n≤x

1

n
.

Split this sum as ∑
t<n≤x

1

n
=
∑
n≤x

1

n
−
∑
n≤t

1

n
.
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Then∫ x

1

dt

t

∑
t<n≤x

1

n
=

(∑
n≤x

1

n

)∫ x

1

dt

t
−
∫ x

1

∑
n≤t

1

n

dt

t

=

(
log x+ γ +O

(
1

x

))∫ x

1

dt

t

−
∫ x

1

dt

t

(
log t+ γ + ε (t)

)
, where ε (t) � 1/t,

=
1

2
log2 x+O

(
log x

x

)
−
∫ ∞
1

ε (t)
dt

t
+

∫ ∞
x

ε (t)
dt

t
.

Since ∫ ∞
x

ε (t)
dt

t
�
∫ ∞
x

dt

t2
� 1

x
,

the result follows with

C2 = −
∫ ∞
1

ε (t)
dt

t
.

�

Lemma 6 There exists a constant Cd such that∑
n≤X

d(n)

n
=

1

2
log2X + 2γ logX + Cd +O

(
1

X1/2

)
.

Solution Left to student

Theorem 7∑
n≤X

d3(n) =
1

2
X log2X + AX logX +BX +O

(
X2/3 logX

)
,

where A = 3γ − 1 and B = Cd + C2 + 2γ2 − 3γ + 1.

Proof With U and V to be chosen, the Hyperbolic method gives∑
n≤X

d3(n) =
∑
n≤X

d ∗ 1(n) =
∑
a≤U

d(a)
∑

b≤X/a

1 +
∑
b≤V

∑
a≤X/b

d(a) (10)

−

(∑
a≤U

d(a)

)(∑
b≤V

1

)
. (11)
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The first term on the right hand side equals∑
a≤U

d(a)

[
X

a

]
=

∑
a≤U

d(a)

(
X

a
+O(1)

)

= X
∑
a≤U

d(a)

a
+O

(∑
a≤U

d (a)

)

= X

(
1

2
log2 U + 2γ logU + Cd +O

(
1

U1/2

))
(12)

+O (U logU) ,

having used Lemma 6. The second term on the right hand side of (10) equals∑
b≤V

∑
a≤X/b

d(a) =
∑
b≤V

(
X

b
log

X

b
+ (2γ−1)

X

b
+O

((
X

b

)1/2
))

by (1)

= X
∑
b≤V

logX/b

b
+ (2γ−1)X

∑
b≤V

1

b
+O

(
X1/2

∑
b≤V

1

b1/2

)

= X

(
logX

∑
b≤V

1

b
−
∑
b≤V

log b

b

)

+ (2γ − 1)X
∑
b≤V

1

b
+O

(
X1/2V 1/2

)
= X logX

(
log V + γ +O

(
1

V

))
(13)

−X
(

1

2
log2 V + C2 +O

(
log V

V

))
(14)

+ (2γ − 1)X

(
log V + γ +O

(
1

V

))
(15)

+O
(
X1/2V 1/2

)
.

The errors from these two terms in (10) are

� XU−1/2, U logU, XV −1 and X1/2V 1/2.

12



We attempt to minimise these errors by choosing U and V to equalise
them. So try XV −1 = X1/2V 1/2, i.e. V = X1/3. Yet UV = X so this means
U = X2/3. It can be checked that all errors are then � X2/3 logX.

With this choice of U and V the term in (11) is(∑
a≤U

d(a)

)(∑
b≤V

1

)
=
(
U logU + (2γ−1)U +O

(
U1/2

) )
(V +O(1)) . (16)

The error here is O
(
U logU + U1/2V

)
which is again � X2/3 logX given the

choice of U and V .

The main terms from (12), (13) and (15) are

X

(
1

2
log2 U + 2γ logU + Cd

)
+X logX (log V + γ) (17)

−X
(

1

2
log2 V + C2

)
+ (2γ − 1)X (log V + γ)

−V
(
U logU + (2γ − 1)U

)
= X

(
1

2
log2 U + logX log V − 1

2
log2 V

)
+X (2γ logU + γ logX + (2γ−1) log V − logU)

+X
(
Cd + C2 + (2γ−1) γ + (2γ−1)

)
,

having used UV = X. Note that these main terms should not depend on
the choice of U and V , the mean value

∑
n≤X d3(n) will have the same main

terms however they are calculated. What we are doing in this method is not
to calculate exactly the error for our result on this mean value but to bound
this error. So a clever choice of U and V will give a better bound on the
error. To check that the main terms do not depend on the choice of U and
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V consider first terms with two logarithms, (dropping the X factor),

1

2
log2 U + logX log V − 1

2
log2 V =

1

2
log2 U + log (UV ) log V − 1

2
log2 V

=
1

2
log2 U +

(
logU + log V

)
log V − 1

2
log2 V

=
1

2
log2 U + logU log V +

1

2
log2 V

=
1

2

(
logU + log V

)2
=

1

2
log2 UV =

1

2
log2X.

Also, for term with one logarithm (again dropping the X factor)

2γ logU + γ logX + (2γ − 1) log V − logU

= (2γ − 1)
(

logU + log V
)

+ γ logX

= (3γ − 1) logX.

All this combines to give the result quoted. �

Note though that now we have justified the claim that it does matter what
the choice is for U and V you will always get the same main terms, you can
go back to (17) and choose, say, U = 1 and V = X when we get

= X

(
1

2
log2 U + logX log V − 1

2
log2 V

)
+X (2γ logU + γ logX + (2γ − 1) log V − logU)

+X
(
Cd + C2 + (2γ − 1) γ + (2γ − 1)

)
= X

(
logX logX − 1

2
log2X

)
+X

(
γ logX + (2γ − 1) logX

)
+X

(
Cd + C2 + (2γ − 1) γ + (2γ − 1)

)
=

1

2
X log2X + (3γ − 1)X logX +X

(
Cd + C2 + (2γ − 1) γ + (2γ − 1)

)
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